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FOREWORD

McDonnell Douglas Helicopter Company (MDHC) has been conducting a study of finite element

modeling of helicopter airframes to predict vibration. This work is being performed under U.S.
Government Contract NAS1-17498. The contract is monitored by the NASA Langley Research Center,

Structures Directorate.

This report presents the results of an effort spent on the development and application of a

computational procedure for reduction of large finite element models of airframe type structures for

efficient dynamic analysis. This procedure was applied to the airframe finite element model of AH-64A

Attack Helicopter and is presented in this report. Key NASA and MDHC personnel are listed below:

NASA LANGLEY

Panice H. Clark, Contracting Officer

Joseph W. Owens, Contract Specialist

John H. Cline, Technical Representative

Raymond G. Kvaternik, Leader,

Rotorcraft Structural Dynamics Group

MCDONNELL DOUGLAS HELICOPTR COMPANY

Mostafa Toossi, Project Engineer

Robert J. King, Project Manager

Mostafa Hashemi-kia, Cognizant Engineer
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1.0 INTRODUCTION
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INTRODUCTION

The NASA Langley Research Center is sponsoring a rotorcraft structural dynamics program with the

overall objective to establish in the United States a superior capability to utilize finite element analysis

models for calculations to support industrial design of helicopter airframe structures. Viewed as a

whole, the program is planned to include efforts by NASA, Universities, and the U.S. Helicopter

Industry. In the initial phase of the program, teams from major manufacturers of helicopter airframes

will apply extant finite element analysis methods to calculate static internal loads and vibrations of

helicopter airframes of both metal and composite construction, condu_ laboratory measurements of
the structural behavior of these airframes, and perform correlations between analysis and

measurements to build up a basis upon which to evaluate the results of the applications. To maintain

the necessary scientific observation and control, emphasis throughout these activities will be on

advance planning, documentation of methods and procedures, and through discussion of results and

experiences, all with industry wide critique to allow maximum technology transfer between companies.
The finite element models formed in this phase will then serve as the basis for the development,

application, and evaluation of both improved modeling techniques and advanced analytical and

computational techniques, all aimed at strengthening and enhancing the technology base which

supports industrial design of helicopter airframe structures. Here again, procedures for mutual critique
have been established, and these procedures call for a thorough discussion among the program

participants of each method prior to the applications and of the results and experiences after the

applications. The aformentioned rotorcraft structural dynamics program has been given the acronym

DAMVIBS (Design Analysis Methods for VIBrationS).

As a major helicopter manufacturer, McDonnell Douglas Helicopter Company is participating in this

program. As a part of this effort, this report presents the work done on development and application of

a computational procedure which can be used to condense large airframe finite element models for

emcient dynamics analysis. This procedure is applied to full dynamic finite element model of the

AH-64A Attack Helicopter. The reduced model is then validated by application in a vibration

reduction study.
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2.0 MODEL REDUCTION METHODOLOGY



COMMENTS ON MODEL REDUCTION PHILOSOPHY

The major goals in the development of this model reduction procedure were twofold. First, to preserve

the global dynamic characteristics of the full model while providing a substantial reduction in the size.

Second, to retain the relationship between the physical characteristics of the reduced and full models

by generating a reduced model which resembles the conventional stick model. This latter item proved

to be beneficial by; a) providing sufficient information for performing efficient vibration reduction

studies, and b) providing sufficient guidlines for performing optimization studies.

Altough there are already several reduction techniques available in literature (Refs. 1-5), there are still

certain shortcomings associated with each of them. For example, in the case of Guyan Reduction (Ref.

1), the accuracy of the reduced mass matrix depends strongly on the judment of analyst. In other

cases (Refs. 1,4, and 5) the reduced mass matrix does not reveal any direct information about the

physical characteristics of the actual mass distribution. Such characteristic is sometime beneficial

where by examination of the terms of the reduced mass matrix, some insight can be gained about the
mass distribution of the actual structure. A similar argument also applies in the case of the reduced

stiffness matrix wherein use of the Generalized Dynamic Reduction procedure (Ref. 5) leads to a

reduced stiffness matrix which can not be related to the physical characteristics of the actual structure.

The objective of this effort is not to dispute the accuracy or efficiency of the existing reduction

techniques but to provide an alternative which emphasizes a reduced model that provides better

insight into the physical characteristics of the actual structure. An important feature of this procedure

is its modularity because it can be applied to individual substructures as well as to the whole model.

This feature is important for optimization applications where it is often desirable to keep the portion

of the structure to be optimized as a full model while reducing the remaining part of the overall FEM

to a managable size.

6



}IV_II'l(IOIAI SI *

ISqX(IOIAI qq_O__I (IMV (IXDD_(IX_I

XHJ_ _IO SDI,I_$I_IXff_;DVHVH;D qVDISXHcI

XH_L NIXXA_J_X_t NIOIJ_VqX_I V SMIVff_X_t •

XZIS XH& DMIDD_(IX_I

AqqVI£NI¥&ISHD-S XqlH2_A qZ(IOIAI qqD_a XH£ _IO

SDI_ISI_IXff_DV_tVHD qV_iOqO XHJ_ SXA_tXSX_ta "

:HDIHAk

XHD_(IXDOHd NIOLLDD_(I_tH V DNIIdOqXAft(I *

XHdOiSOqlHd MOIJ_DD_(IXH qX(IOIAI NIO IS_MXIAIIAIOD



k.

STRUCTURAL INFLUENCE COEFFICIENTS

The principal of superposition which is used in the analyses of linearly elastic structures is utilized

here. This principal states that the total linear or angular deflection of any point of the structure is the

sum of the deflections or rotations produced by the individual forces and moments. The same principal

also applies to the situation where the net force or moment generated at a point is equal to the sum of

the forces or moments produced through application of individual displacements or rotations. In

mathematical form, this principal is stated as follows:

YI Ktl _'_ KI_ vv Kilt _' [ Ktl v° Kt_ _'° Kuv _'e ul

Y2 K2_ K22_ K2t__ ] K2__° K22_' K2_ _° v2

• I :

Yt¢ KNx v_' Kn_" " Kt¢_ v° Kmv "° vN
___ _ = ........... (1)

M2. K210_'. K2_ Ov KZl¢. [ K21 O0. K22 O0 K2N O0 02.

• i i
MI¢ KNlOV KN ou KN'NOU I KN1 O0 Klv, O0 KNN O0 ON

where the stiffness influence coefficient, Kii °_, represents the load at the node i in the a direction due

to unit applied displacement at node j in the/_ direction.
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STRUCTURAL INFLUENCE COEFFICIENTS (continued)

Using the above definition of the stiffness influence coefficients, a "simulation" process similar to the

procedure used during the experimental measurement of the actual structure influence coefficients is

developed. In this _simulation," the full analytical model resembles the actual structure whose elastic

characteristics are defined in terms of the stiffness matrix. Once this matrix is defined, it is used to

correctly take into the account the contributions of other elements to the elastic coupling effects

between each pair of selected points (i.e., points to be included in the reduced model). Similar to the

experimental measurement process, only the selected points of the structure will be constrained and

other points of the structure will be allowed to move freely and contribute to the elastic deformation of

the structure under unit enforced displacement. The model is constrained at all the selected points

initially and a systematic procedure is devised to _unlock = the appropriate degree-of-freedom (DOF)

while keeping other DOFs locked during the application of displacements (will be discussed in more

detail in the implementation section). Subsequently, the reaction forces are calculated only at the

selected points and are used to assemble different columns of the reduced stiffness matrix. This

procedure, which provides results similar to those obtained from the usual static condensation

technique, offers certain advantages which will be discussed in the application section.

This process is illustrated for a simple planar beam model, shown below. The stiffness coefficients of

the reduced model are calculated by applying unit displacement or rotation at each of the selected grid

points while holding all other selected grid points fixed and then calculating the resulting reaction

loads of all DOF of all the selected points. This process is repeated for all the other selected points

and, as a result, a set of stiffness coefficients representing the reduced model stiffness matrix are
obtained. As can be seen from this figure, frames 1-6 show the application of unit displacement at each

of the selected grid points while frames 7-12 show the application of a unit rotation. The center frame

indicates the type of reaction forces which result from the application of a unit displacement. It should

be pointed out that the calculated reaction forces represent the =equivalent _ elastic contributions of all

the structural elements connecting the selected grid point to its surronding selected grid points.

10
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CALCULATION OF FORCES OF CONSTRAINT

As stated earlier, subsequent to enforcement of a unit displacement or rotation on a selected grid

point, a set of reaction forces are obtained which are used in the assembly of the reduced stiffness

matrix. Thus, the key factor in obtaining an accurate reduced stiffness matrix is the correct calculation

of these reaction forces. For this purpose, steps are taken in the "simulation" process to correctly take

into account the "equivalent" elastic effects of all the structural elements connecting the selected grid

point of interest to its immediate surrounding selected grid points. As a part of the requirements, it

was stated that due to the definition of the stiffness influence coefficient, while applying the unit

displacement at each of the selected grid points, it is necessary to constrain all of the other grid points.

As a result, once a unit displacement is applied to the constrained model, the resulting reaction forces

at each of the selected constrained points correspond to the forces of constraint.

In MSC/NASTRAN, these forces are calculated by solving the following equation.

g. l g.J
(i)

where Qa represents the vector of forces of constraint. Again, the resulting assembled reduced stiffness

matrix will be similar to one obtained from the usual static condensation technique. However, study of

each of the individual set of calculated reaction forces reveal certain information about the elastic

behavior of corresponding section of the full model which prove to be beneficial in a better

understanding of the structure. More discussion will be presented in the application section.

12



Hilil i: ,_ "

CALCULATION OF FORCES OF CONSTRAINT

[gl
U

P

Q

Stiffness matrix

Displacement vector

Applied load vector
Reaction force at the boundary nodes

Subscripts:

Y
8

Set containing (_ee) structural points

Set containing points eliminated by SPCs

(Q.) = [[K..I [K.f][Kyy]-'[K_.I]{U.}+
[K.$] lEss] -_ (P$} - {P.}
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MASS CONDENSATION

For the mass matrix condensation, the primary objective is to use a technique that results in a reduced

mass matrix which provides a better insight into the mass distribution of the actual structure. As

stated earlier, such a characteristic can be beneficial for situations where rapid vibration reduction

studies are desirable and it is necessary for the analyst to have a better understanding of the mass

distribution of the areas of interest. Consequently, an in-house mass lumping procedure is used which

will be discussed in detail in the implementation section.

14
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STIFFNESS CONDENSATION

Condensation of the full model stiffness matrix is performed by a set of MSC/NASTRAN DMAP

alters (shown below} using the static rigid format (SOL-24). As a part of the reduction process, all the

selected grid points of the full model (i.e., points to be included in the reduced model) are initially

constrained by imposing permanent single-point constraints (in all six directions) on the GRID cards

corresponding to these selected grid points. Next, a set of SPCD cards together with equal number of

FORCE (or MOMENT) cards are defined in the Bulk Data Deck to simulate the applied unit

displacements or rotations. As indicated below, the total number of pairs-of SPCD and FORCE (or

MOMENT} cards is equal to n where n is the total number of degrees-of-freedom of the reduced
model. For calculating the reaction forces, n number of SUBCASEs are defined in the Case Control

Deck where each SUBCASE referrs to one pair of SPCD and FORCE cards. For example, the first

SUBCASE corresponds to application of a unit displacement to the first selected grid point along the

basic coordinate, X-axis. The resulting single-point forces of constraint of all DOF of all the selected

grid points are then printed out. Similarly, a unit displacement or rotation is applied along different

axes to the same selected grid points. This process is repeated for other selected grid points. For the

example shown below, the enforced displacements are applied to the selected grid points of the full

model only along the X-axis. Appropriate changes need to be made to the SPCD and FORCE cards

when different displacements or rotations are applied. Once all the forces of constraints are obtained,

they are assembled together through a FORTRAN program to form a set of DMIG cards, representing

the reduced stiffness matrix.

18



STIFFNESS CONDENSATION

SOL 24

SET SID = (SELECTED GRID POINT ID'S OF THE FULL MODEL)

SPCFORCE = SID

SUBCASE 1

LOAD = 1

SUBCASE 2

LOAD = 2

SUBCASE n

LOAD = n

BEGIN BULK

SPCD,1,G_,I,I.0

FORCE,1,GI,,0.0,1.0,0.0,0.0

SPCD,2,G2,1,1.0

FORCE,2,G2,,0.0,1.0,0.0,0.0

SPCD,n,G,,1,1.0

FORCE,n,G,,,0.0,1.0,0.0,0.0

ENDDATA

19
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STIFFNESS CONDENSATION (continued)

Subsequent to application of displacements or rotations, the resulting SPCFORCEs are used in

assembling the reduced stiffness matrix. For this purpose, a FORTRAN program which reads the

MSC/NASTRAN output (i.e., SPCFORCEs) is used to position the resulting SPCFORCEs in the

appropriate columns of the reduced stiffness matrix. The following figure shows the general form of the

resulting reduced stiffness matrix. The first column represents the SPCFORCEs obtained from the

application of a unit displacement along the X-axis of the first selected grid point while the tenth
column is the result of the application of a unit moment about the X-axis for the second selected grid

point. Subsequent to assembly of the reduced stiffness matrix, a set of MSC/NASTRAN DMIG cards

are generated which can be used for different follow-up analyses. It should pointed out that the matrix
shown below contains all six degrees-of-freedom of the selected grid points for the reduced model.

However, the reduction procedure also applies to situations where only translational degrees-of-freedom

for the reduced model are of interest.
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STIFFNESS CONDENSATION (continued)
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MASS CONDENSATION

As stated earlier, the primary objective is to usea technique that results in a reducedmassmatrix
which provides a better insight into the mass distribution of the actual structure. For this purpose, an

m-house computer program was used which systematically distributes the full model mass data to the

reduced model grid points. The resulting reduced model mass distribution were then presented in the

form of a set of MSC/NASTRAN CONM2 cards for the reduced model.

Distribution of the full model mass data is based on the algorithm shown below. In this equation,

WTMASS represents the portion of mass item M which is distributed to a selected grid point (i.e,

one of the reduced model grid point) located at a distance D from the mass item.

M/D (2)WTMASS = N l

For the mass lumping process, the lumping program requires two sets of information, namely, the full

model mass data records (e.g., consistent with the MIL-STD1374A) and the location of the selected

grid points of the full model (i.e., points which make up the reduced model). Starting with the first full

model mass item, the program internally generates an imaginary volume (i.e., lumping volume) around

the mass item. Next, by searching through the selected grid points, it identifies those grids which are

confined within this volume and then assigns a different portion of the mass item to each of the selected

grid points using the above equation. Then, in case where there are still some remaining portions, the

program increases the size of the lumping volume and starts assigning portions of the remaining mass

item to the new set of grids which may now be within the confinement of the increased volume. This

process is repeated until the mass item is completely distributed to the surrounding grids.

This process will be repeated for each of the full model mass items. However, proper care is taken

within the program for avoiding the relumping of the mass of those items which have already been

accounted for. Also, additional options are also made available in the program for the manual

distribution of large mass items.

22
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MASS CONDENSATION

• GENERATING A REDUCED MASS MATRIX THAT PROVIDES DIRECT

INSIGHT INTO ACTUAL MASS DISTRIBUTION OF FULL MODEL

• METHODOLOGY:

• REDISTRIBUTING MASS OF EACH ITEM BASED ON THE

FOLLOWING"

WTMASS =
M/D

1
E/N=1 D i

• WTMASS - Portion of mass of item assigned to a grid point

• M- Mass of the full model item

• D - Distance between mass item C.G. and the reduced

model grid point

23
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AH-64A VEHICLE DESCRIPTION

The AH-64A Apache is a twin-engine, four-bladed rotary-wing aircraft operated by a tandem seated

crew of two. It is intended for use by Army attack helicopter units. The airframe is a redundant

semi-monocoque construction representing a fail-safe, damage tolerant design. The aircraft is equipped

with main and tail landing gears which are functional for both normaI landings and crash attenuation.

Provisions are made for a nose mounted weapon system and for the carriage of wing mounted external

stores.

The T700-GE-701 engines on the Apache are mounted high on the outside of the airframe. The

engines are widely separated to reduce the risk of both engines sustaining combat damage. The rotor

blades consist of multiple fiberglass spar tubes and stainless steel outer skin. This construction results

in a ballistically survivable blade. The main rotor hub is fully articulated with redundant lead-lag

dampers on each blade. An M230 30mm chain gun is mounted on the bottom of the airframe between

the crew stations. Hellfire missiles and/or 2.75 in. FFAR rockets can be carried on the wing mounted

pylons. The sighting for the weapon system is performed by the Target Acquisition and Designation

System (TADS) and the Pilot Night Vision System (PNVS) located in the front of the airframe.

The photograph below shows an AH-64A in its primary mission configuration with 8 Hellfire missiles,

38 FFAR rockets, and 600 rounds of 30mm ammunition.

25
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AH-64A OVERALL DIMENSIONS

The accompanying three view drawing shows the overall dimensions for the AH,64A aircraft.

General Data:

Primary Mission Gross Weight

Basic Structural Design Gross Weight

Maximum Alternate Mission Gross Weight

Ferry Mission Gross Weight

Main Rotor RPM

Tail Rotor RPM

_at

V_j,t

Flight Maneuver Limits

14,694 lb.

14,660

17,650

21,000

289

1,403

204 kn

164

45

45

+3.5g to -0.5g

28



AH-64A OVERALL DIMENSIONS

13.97 FT

48.16 FT

58.26 FT

11.54 FT

29
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DESCRIPTION OF AH-64A FULL NASTRAN FINITE ELEMENT MODEL

The full analytical model used for this work is the dynamic MSC/NASTRAN finite element model of

the AH-64A airframe which is shown in the following figure. This model, which contains a total

number of 5100 degrees-of-freedom (DOF), was used for both the model reduction process and

vibration reduction studies. It should be pointed out that this model represents a modified version of

the MSC/NASTRAN model which was developed earlier under this contract in a separate task. These
modifications were made to provide a more detailed treatment of local effects and include refinements

of the model in the forward avionics bays, the engine support structure and the engine nacelle.

3o
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DESCRIPTION OF AH-64A FULL NASTRAN FINITE ELEMENT MODEL

(Continued)

Prior to performing the reduction process, certain modifications were made to the full model in order

to provide for an easier adaptation of the reduction procedure and a more accurate representation of
the global behavior of each transverse section of the full FEM.

These changes included the addition of a set of RBE2 rigid elements at each fuselage frame which

resulted in a set of grid points located near the centers of the frames. Subsequently, these grid points,

together with some of the existing full model grid points, were used to define the grid point locations of

the reduced model. Further explanation as to the consequences of the use of these rigid elements will

be discussed in the following sections.

32



EtESCRIPTION OF AH-64A FULL NASTRAN FINITE ELEMENT

MODEL (Continued)

• ADDITION OF RBE2 ELEMENTS TO THE FULL MODEL FOR:

• EASIER ADAPTATION OF THE REDUCTION PROCEDURE

• BETTER REPRESENTATION OF GLOBAL BEHAVIOR OF

EACH TRANSVERSE SECTION

33



MODAL CHARACTERISTICS OF FULL MODEL

Prior to the development and application of the reduction procedure, a study was performed to

determine the dynamic characteristics of the full model. For this purpose, the natural frequencies and

mode shapes of the full model were calculated over the frequency range of (0 - 25) Hz. Frequencies of

all the modes in this range are listed in the table below. Of the modes calculated, only those which

represent global modes of the airframe will be used in the correlation studies. These eight particular

modes are shown in the following figures. It should be pointed out that the addition of the RBE2

elements resulted in slight changes in the frequencies and modes of the original full model which are

reflected in the following results. However, these changes did not impose any restrictions on the

reduction process since the modified full model will be used in the reduction process.

34



i •

MODAL CHARACTERISTICS OF FULL MODEL

NATURAL FREQUENCIES

Mode Number Frequency (Hz)

1 2.167

2 2.169

3 2.197

4 2.218

5 4.333

6 4.416

* 7 5.452

* 8 6.001

9 6.972

* 10 10.697

11 11.302

* 12 11.443

* 13 11.967

* 14 13.406

Mode Number Frequency (Hz)

* 15 14.158

16 16.751

17 17.012

18

19

20

21

22

23

* 24

25

26

27

28

17.483

17.713

17.947

18.477

18.508

18.652

20.626

21.530

22.115

23.080

24.258

* Modes which are used in correlation studies.

35
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MODAL CHARACTERISTICS OF FULL MODEL
SYMMETRIC ENGINE YAW AND PITCH (11.44 Hz)

Z X

!

Y

F

39



O*7

L _J

tl

-- • i.

(ZH £6"II) DI_IIG[NI_I_I "IVMI(IFI_LIDMO'I 'IIV3_ "IVDI,L_tA

"IXGOIAI '-I'I£1_I AO SDI_LSIHX_LDVHVHD "IVOOI_

k

. /



MODAL CHARACTERISTICS OF FULL MODEL
MAST LONGITUDINAL BENDING (13.41 Hz)

:__ii_ _i_ !_ :- _

Y

V

41



L!_ . _

MODAL CHARACTERISTICS OF FULL MODEL

ANTISYMMETRIC ENGINE YAW (14.16 Hz)

!
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THE REDUCED MODEL

Following the application of the reduction procedure to the full AH-64A airframe dynamic finite

element model, the reduced model shown in the following figure was obtained. This model, which has

83 grid points and a total of 498 DOF, is only a mathematical representation of the reduced (stick)

model (i.e., the elastic properties are defined in terms of stiffness matrix rather than physical elements

such as bar, beam, etc.). Obviously, it is desirable and beneficial to carry this mathematical reduced

model one step further and develop an equivalent "physical" reduced model. However, this process was

not pursued at this time. Instead, the "mathematical" reduced model was adapted for sensitivity

analysis study which will be discussed in a later section.

As stated earlier, the resulting reduced stiffness matrix is the same as the one obtained from static

condensation for this particular application. However, in other applications where the points near the

center of each frame are dependent on the surrounding points on frames (i.e., RBE3 is used to

represent the motion of the center point as a function of surrounding points on frame), static

condensation (i.e., ASET) can not be used whereas this procedure can be used to obtain the reduced

stiffness matrix. Another desirable feature of this reduction procedure is that due to the "simulation"

procedure used, the elastic couplings which take place between each pair of selected grid points can be

easily identified from forces of constraint during application of each individual unit displacement or

rotation. This usually provides a better understanding of the behavior of each particular location of

the structure. Finally, the reduction process can be performed with an arbitrary number of

degrees-of-freedom at each grid location. For example, in situations where the rotational effects are of

no interest, only the three translational DOFs can be included in the reduced model. This is simply

done through imposing only translational unit displacements during the stiffness condensation process.
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THE REDUCED MODEL

Degrees-Of-Freedom 498
Grid Points 83
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MODAL CHARACTERISTICS OF REDUCED MODEL

To determine the dynamic characteristics of the reduced model, a set of DMIG cards (generated from

stiffness condensation process) together with a set of CONM2 cards (obtained from mass lumping

program) were used in a normal mode analysis (SOL 3). The table below shows all the natural

frequencies calculated through 25 Hz. Those frequencies which are used for the correlation studies are

flagged. Corresponding mode shapes are shown in the figures which follow the table.
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MODAL CHARACTERISTICS OF REDUCED MODEL
NATURAL FREQUENCIES

Mode Number Frequency (Hz

* 1 5.623

* 2 6.153

* 3 9.764

4 11.417

* 5 11.668

* 6 12.308

* 7 14.326

* 8 16.433

9 17.268

10 18.420

* 11 19.603

12 21.001

13 21.145

14 21.990

15 22.226

16 23.344

* Modes which are used in correlation studies.
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MODAL CHARACTERISTICS OF REDUCED MODEL
FIRST LATERAL BENDING MODE (9.76 Hz)
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MODAL CHARACTERISTICS OF REDUCED MODEL
ANTISYMMETRIC ENGINE YAW MODE (16.43 I-Iz)
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CORRELATION OF STATIC DEFORMATIONS

Prior to performing the correlation study, a set of grid points (i.e., all the reduced model grid points

together with their corresponding full model counterparts) were selected. These grid points were then

grouped together in such a manner that the starting grid number corresponds to the nose of the

aircraft while the last grid number is representative of the tip of the tail landing gear. The following

table shows the arrangements used between the grid points (shown on the following figures) and

different areas of the airframe model. Subsequently, both the full and reduced models were constrained

at the nose of the aircraft (i.e., grid point 1) in all six directions. A set of separate concentrated static

forces and moments were applied at the tip of vertical tail (i.e., grid point 83) in each direction and the

resulting translational deflections were calculated for each loading condition. The following figures

show the resulting translational deformation patterns between the two models for all six cases. These

results indicate excellent agreement in deflections, which in turn is indicative of good agreement

between the two stiffness matrices.

58



CORRELATION OF STATIC DEFORMATIONS

,Grid Locations Areas of the Aircraft

1 - 8 Forward Fuselage section

9 - 12 Main Landing Gear

13 - 21 Front Area of Mid Fuselage Section

22 - 23 Main Rotor Mast Section

24 - 31 Right Wing Section

32 - 39 Left Wing Section

40 - 42 Middle Area of Mid Fuselage Section

43 44 Engine Locations

45 - 56

57 - 69 Tsilboom Section

70 - 71 Lower Portion of Vertical Tail

72 - 79 Horizontal Stabilator

80 - 81 Upper Portion of Vertical Tail

82 - 83 Tail Landing Gear Locations

Aft Area of Mid Fuselage Section
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CORRELATION OF STATIC DEFORMATIONS
(Fx APPLIED AT GRID LOCATION 83)

2 4 6 8 10121416182022242628303234363840424446485052545658606264666870727476788062
0.20

U_
Z
0

C_

C_

0
Z

0.15

0.10

0.00
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CORRELATION OF STATIC DEFORMATIONS
(Fx APPLIED AT GRID LOCATION 83)
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CORRELATION OF STATIC DEFORMATIONS
(Fy APPLIED AT GRID LOCATION 83)
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CORRELATION OF STATIC DEFORMATIONS
(Fy APPLIED AT GRID LOCATION 83)

2 4 6 8 10121416182022242628303234363840424446485052545658606264666870727476788082
0.05

0.00
1 3 5 7 9 11131517192123252729313335373941434547495153555759616365676971737577798183

GRID LOCATION

FULL MODEL, Y-COMP.

STICK MODEL, Y-COMP.
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CORRELATION OF STATIC DEFORMATIONS
(Fy APPLIED AT GRID LOCATION 83)
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CORRELATION OF STATIC DEFORMATIONS
(My APPLIED AT GRID LOCATION 83)
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CORRELATION OF MODAL DATA

The next step of the correlation process was to check the accuracy of the modal data which in turn

reflects on the accuracy of the reduced mass matrix. For this purpose, an in-house computer program

which provided a systematic way of checking the degree of correlation between frequencies, mode

shapes or a combination of the two, was used. The criteria used for the correlation process were based

on selecting modes which have both closest natural frequencies and best correspondence between the

mode shapes. Prior to the calculation of these correlation factors, each model's mode shapes were

normalized to mathematically provide a value of one (e.g., for correlation factors) for the best

correlation and zero for the worst case. In this equation the resulting _q

_bq (1)

represents the jth normalized modal amplitude at the ith location. Subsequent to normalizing the

modes, three correlation factors were used together in deciding which two modes correspond best to

each other. The first factor, FCii, uses frequency information between the ith mode of one model

against the jth mode of the other model. The parameters T and A refer to the full and reduced model,

respectively. The second factor, CORR_j, referred to as the shape factor, uses the mode shape

information only. Finally, the combined factor, CC_j, which uses both mode shapes and frequencies, is

given by the third equation.

[[TF_- AF_I]FC, i = 1.0- L -T-Fi (2)

N }CORR_j = max ITS,,,,- A_.j[, _ ITS,,,, + A_il -
._----1 m,----1

min ITq',,.- A_,,,¢I, _ ITg'_, + Aq',,,i[ -
m=l m=l

(3)

CC_i = v/(CORI_i)(FCq 2) (4)

In the above equation, N represents the number of grid points used in the reduced model. Also, it

should be mentioned that, based on past experience, it was found that an exponent value of 2, used in

the last equation, usually results in a better indication of correlation between two modes.
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CORRELATION OF MODAL DATA

• FREQUENCY CORRELATION"

[ITF,-Ar,I]
FC, i = 1.0- [ T-Fi ]

• MODE SHAPE CORRELATION:

CORR_i =max { _ IT'_,_- A'_mjI, _ IT'_,m + A'_mil}-m= 1re=l

m=l m=I

• COMBINED MODE AND FREQUENCY CORRELATION:

CCii = _(CORR_i)(FCii 2)
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CORRELATION OF MODAL DATA (Continued)

After applying the above correlation criteria to the modal data obtained from the full and reduced

(i.e., stick) models, a set of correlation factors (CC_j) were obtained which indicated the degree of

correlation between each pair of modes. After careful examination of these factors and their

corresponding modes, the modes indicated in the following table were selected. As can be seen from

the table, a high degree of correlation exists between these selected modes. As was expected, most of

the local modes of the full model were no longer present in the reduced model. This was because local

areas were not included in the reduced model grid locations. For example, the first four modes of the

full model represent the pilot and copilot seat modes whose definitions are not included in the reduced

model. Thus, these modes were not seen in the reduced model. In addition, the mode shapes were

visually examined to confirm that most of the reduced model mode shapes were global airframe modes.

For qualitative comparison of the degree of correlation between each pair of modes, they were

superimposed on each other which are shown in the figures following the table. In these figures the
reduced model is referred to as a "stick" model. Similar to the procedure used in the static case, a set

of bar charts are presented which provide a quantitative assessment of the degree of correlation

between the corresponding modes. In these bar charts, the normalized mode shape of the full model

RBE2 rigid elements (i.e., the independent degree-of-freedom) located near the center of each frame is

plotted against its reduced (stick) model counterpart.
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CORRELATION OF MODAL DATA
STICK VS. FULL MODEL

MODE

TAILBOOM TORSION

FREQUENCY (HZ)

FULL STICK

5.45 5.62

MODE SHAPE

CORRELATION*

0.92

1ST VERT. BENDING

1ST LATERAL BENDING

SYM. ENGINE YAW AND PITCH

VERT. TAIL LONG. BENDING

MAST LONG. BENDING

ANTISYM. ENGINE YAW

STABILATOR YAW

6.00 6.15

10.70 9.76

11.44 11.67

11.97 12.31

13.41 14.33

14.16 16.43

20.63 19.60

0.93

0.84

0.90

0.91

0.87

0.70

0.81

* 1.00 = PERFECT CORRELATION

0.00 = NO CORRELATION
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CORRELATION OF MODAL DATA
STICK VS. FULL MODEL

FIRST VERTICAL BENDING MODE

--- FULL MODEL (F=6.8 HZ)

--- STICK MODEL(F =6-15 HZ)

Z ×

APACHE

F
Y ×
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CORRELATION OF MODAL DATA
STICK VS. FULL MODEL

FIRST LATERAL BENDING MODE

--- FULl- MODEl_ (F=18.78 HZ)

--- STT_CK MI]DE]-(F =9-76 HZ.]

¥

Z ×

APACHE

"" |

!
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VIBRATION REDUCTION STUDY

In addition to the development and application of the model reduction procedure, another study was

made to examine the applicability of the reduced (stick) model to a vibration reduction study. For this

purpose, the reduced model was subjected to different four-per-rev hub excitations and the modal

frequency responses (SOL 30) of different locations of the structure, together with the contribution of
each mode to the total response of each location, were calculated. Subsequent to the identification of

the dominant modes, a design sensitivity analysis study (SOL 53) was performed to identify the

pertinent model parameters (e.g., cross sectional area, area moment of inertia, etc.) which have the

most effect on the vibrational response at the selected locations. Once these parameters were

identified, certain incremental changes were made to each individually or a combination of these

parameters (to be discussed later) to reduce the vibration at the selected locations.
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VIBRATION REDUCTION STUDY

• TO EXAMINE THE APPLICABILITY OF REDUCED MODEL TO A

VIBRATION REDUCTION STUDY

USING THE REDUCED MODEL

• CALCULATE CONTRIBUTION OF EACH MODE TO TOTAL

FORCED RESPONSE

• IDENTIFY THE STRUCTURAL PARAMETERS EFFECTING THE

RESPONSE THROUGH DESIGN SENSITIVITY STUDIES

• MODIFY STRUCTURE TO REDUCE VIBRATION
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CALCULATION OF MODAL CONTRIBUTIONS TO TOTAL RESPONSE

In conjunction with the vibration reduction study, the first step was to determine the contribution of

each mode to the total response of the selected portion of the structure, which for this case was the tip

of the vertical tail of the AH-64A reduced model. For this purpose, an in-house DMAP program was

used in conjunction with the MSC/NASTRAN modal frequency response solution sequence (SOL 30)

to determine the contribution of each mode to the total displacement or acceleration response of the

point of interest. The following figure shows the four modes with the largest contributions to the total

response of the selected point, when the aircraft is subjected to a four-per-rev vertical hub excitation.

As can be seen, mode 17 contributes the most to the total response. In addition, examination of other

modes and the results obtained from the DMAP indicated that the fifteenth mode (i.e., 17.268 Hz) to

be the next highest contributor to the response of the point of interest. Therefore, these two modes

(i.e., modes 15 and 17) were selected to be used in the following design sensitivity analysis. This

selection process was repeated for two other types of hub excitations (i.e., longitudinal and lateral

excitations) and a similar pattern was obtained.

118
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DESIGN SENSITIVITY ANALYSIS STUDIES

The purpose of this study was to identify those parameters which have the most effect on the response

of selected normal modes in the area of interest of the structure. In relation to this effort, it was

decided to use the design sensitivity analysis capabilities of MSC/NASTRAN. Prior to using SOL 53,

it was necessary to introduce some MSC/NASTRAN element property cards without affecting its

dynamic characteristics. This was due to the fact that the reduced model stiffness properties was

represented only through a set of DMIG cards. For this purpose, a set of very soft CBARs was added

between each pair of grid points of the reduced model. Another normal mode run was made to check

the effects of the CBARs on the overall characteristics of the reduced model. Results indicated very

little change.

Subsequent to the addition of CBAR elements, it was decided to study a section of the aircraft in close

proximity to the point of interest (i.e., tip of the vertical tail). Based on the study of the mode shapes,

the aircraft tailboom was selected for the following analysis. For this analysis, four structural

parameters were selected as the design variables. These included: the cross-sectional area, the two area
moments of inertia, and the torsional constant parameter. The two dominant stick model modes (i.e.,

modes 15 and 17) which represented mainly the tailboom vertical and lateral bendings, were selected

as the "constraint" parameters.

Subsequent to selection of all design variables and "constraint" parameters, the design sensitivity

analysis was run for all twelve tailboom frame segements and a set of sensitivity coefficients obtained.

These are shown in the following figures. From these figures, it is apparent that the two area moments

of inertia parameters have the most effect on the frequency placement of the two modes. Consequently,

these parameters were altered which shifted the frequencies of these two modes away from the

four-per-rev excitation frequenvy. The table following these figures represents the matrix of the

changes which were made to the stick model. This process resulted in a fairly significant reduction of
the vibration level at the tip of vertical tail. The calculated response for each of the three hub

excitations are shown in the tables following the figures. As indicated in these tables, each response

amplitude is normalized with respect to its corresponding stick model values. Similar changes were also
made to the same locations of the full model and the response of the vertical tail was calculated. These

results are tabulated in the following tables. In this case, the response amplitudes are normalized with

respect to the baseline (i.e., prior to introducing any changes) full model.
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DESIGN SENSITIVITY ANALYSIS STUDIES

TO IDENTIFY THE PARAMETERS WHICH MOST EFFECT THE

RESPONSE OF A SELECTED PORTION OF STRUCTURE THROUGH:

• ADDITION OF ELEMENT PROPERTY CARDS TO THE REDUCED

MODEL

• SELECTION OF PERTINENT STRUCTURAL PARAMETERS AS

DESIGN VARIABLES

• APPLICATION OF NASTRAN DESIGN SENSITIVITY ANALYSIS

• IDENTIFICATION OF IMPORTANT SENSITIVITY COEFFICIENTS

• INTRODUCTION OF STRUCTURAL CHANGES FOR VIBRATION

REDUCTION
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DESIGN SENSITIVITY ANALYSIS
(MODE-15, 17.26 Hz)

STUDIES

0.010

0.008

0.006
O

0.000
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

STICK MODEL

A CHANGE

mm II CHANGE

k_-_I2 CHANGE

X-STATION

E_J CHANGE

122



0.10

DESIGN SENSITIVITY ANALYSIS STUDIES
(MODE-l?, 19.60 Hz)

0.08

0.04

Z 0.02

0.00
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

STICK MODEL

7"AA CHANGE

_I1 CHANGE

_-_]I2 CHANGE

X-STATION

_]J CHANGE
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DESIGN SENSITIVITY ANALYSIS STUDIES

Model Changes

Case No. Changes

1 None (baseline stick model

2 Baseline model with the soft CBAR elements

3 1% increase in/1 in sections located between

stations 2 to 5.

4 1% increase in 11 and/2 in sections located

between stations 9 to 12

5 1% increase in/1 and/2 in sections located

between stations 2 to 5

6 5 % increase in I1 in sections located between

stations 2 to 5

7 5 % increase in I1 in sections located between

stations 2 to 5 and 9 to 12
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DESIGN SENSITIVITY ANALYSIS STUDIES

STICK MODEL

Longitudinal Hub Excitation

Frequency4Hz) Total Response Normalized)

Case No. Mode-15 Mode-17 X-Comp. Y-Comp. Z-Comp.

1

2

3

4

5

6

7

17.268

17.269

17.271

17.273

17.272

17.275

17.288

19.603

19.604

19.629

19.636

19.633

19.652

19.770

1.000

0.998

0.971

0.963

0.966

0.945

0.828

1.000

0.998

0.973

1.006

0.968

0.949

0.842

1.000

0.998

0.969

0.964

0.963

0.943

0.827
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DESIGN SENSITIVITY ANALYSIS STUDIES

STICK MODEL

Lateral Hub Excitation

Frequencyq Hz) Total Response (Normalized

Case No. Mode-15 Mode-17 X-Comp. Y-Comp. Z-Comp.

1

2

3

4

5

6

7

17.268

17.269

17.271

17.273

17.272

17.275

17.288

19.603

19.604

19.629

19.636

19.633

19.652

19.770

1.000

0.989

0.961

0.950

0.951

0.935

0.811

1.000

0.991

0.989

0.993

0.986

0.985

0.969

1.000

0.989

0.963

0.956

0.954

0.941

0.833
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DESIGN SENSITIVITY ANALYSIS

STICK MODEL

STUDIES

Vertical Hub Excitation

Frequencyl Hz) Total Response Normalized)

Case No. Mode-15 Mode-17 X-Comp. Y-Comp. Z-Comp.

1

2

3

4

5

6

7

17.268

17.269

17.271

17.273

17.272

17.275

17.288

19.603

19.604

19.629

19.636

19.633

19.652

19.770

1.000

0.998

0.968

0.967

0.963

0.940

0.827

1.000

0.999

0.972

0.973

0.970

0.946

0.846

1.000

0.998

0.970

0.973

0.966

0.943

0.847
t
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7.0 CONCLUDING REMARKS
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CONCLUDING REMARKS

A computational procedure for the reduction of large airframe finite element models has been

developed. This procedure, which has been implemented as a set of MSC/NASTRAN DMAP alters, is

used to obtain a significantly reduced model while retaining the essential dynamic characteristics of the

full-sized model. The procedure was applied to the airframe dynamic finite element model of AH-64A

Attack Helicopter. As a result, a reduced model with significantly less DOFs was obtained. This

reduced model, which is an adequately accurate representation of the global behavior of the full model,

resulted in a substantial reduction in the computation time. An additional study was performed in

order to examine the applicability of this reduced model to vibration reduction studies. In conjunction

with this effort, the MSC/NASTRAN design sensitivity analysis was used to identify the pertinent

structural parameters affecting the response of the aircraft's vertical tail area. Subsequent to the

identification of these parameters, they were used in a vibration reduction study. As a result, a fairly

significant reduction in vibration level at a selected location of the reduced model was demonstrated.
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CONCLUDING REMARKS

DEVELOPED A REDUCTION PROCEDURE WITH THE FOLLOWING

CHARACTERISTICS:

• PROVIDES A REDUCED MODEL WHILE RETAINING THE

ESSENTIAL DYNAMIC CHARACTERISTICS OF THE FULL MODEL

• REDUCTION PROCEDURE WAS IMPLEMENTED IN TERMS OF

NASTRAN DMAP ALTERS

APPLIED THE REDUCTION PROCEDURE TO AH-64A DYNAMIC FEM

MODEL

VALIDATED THE REDUCTION PROCEDURE

EXAMINED THE APPLICABILITY OF THE REDUCED MODEL TO A

VIBRATION REDUCTION PROBLEM
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